Breakout Session 1

Boundary Currents / Shelf-Deep Ocean Exchange
1. Interannual variability of currents and water properties has fundamental effects on ecosystem structure/dynamics in all coastal and boundary current systems
2. Cross-shore overturning is key exchange between shelf and deep ocean
3. Episodic events (e.g., upwelling) are key, as are submesoscale processes, and ecological hotspots
4. Land-deep ocean connectivity

1. Relevant processes vary in importance in different locations.
2. Different societal drivers in each boundary or coastal system
3. Technical needs/implementation challenges vary by system
Candidate systems

Figure 6. Conceptual locations for a global network of boundary current arrays. Subpolar boundary current arrays are shown in orange, poleward subtropical western boundary systems in blue, equatorward low-latitude boundary systems in black, major eastern boundary systems in pink. Green shows the possible locations of arrays to monitor key interbasin exchanges.

WBCs (x6) - Agulhus, Somali, Kuroshio, EAC, Gulf Stream, Brazil
EBCs (x5) – California, Humboldt, Canary, Benguela, Leeuwin
Discussion Topic

Key points from Breakout discussions

<table>
<thead>
<tr>
<th>Discussion Topic</th>
<th>Key points from Breakout discussions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Societal impact(s) of the project(s)</td>
<td>Heat transport/climate predictability (e.g., rainfall); retroflection drives upwelling; sardine fishery; acidification/carbon cycle</td>
</tr>
<tr>
<td>Gap assessment(s)</td>
<td>Variability occurs over large region, current obs limited in spatial extent;</td>
</tr>
<tr>
<td>Technology requirements</td>
<td>Will be de</td>
</tr>
<tr>
<td>Financial feasibility</td>
<td></td>
</tr>
<tr>
<td>Any new observations, data and modeling requirements</td>
<td>OSSEs,</td>
</tr>
<tr>
<td>Identifying possible implementation challenges</td>
<td></td>
</tr>
</tbody>
</table>
Discussion Topic

<table>
<thead>
<tr>
<th>Key points from Breakout discussions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Societal impact(s) of the project(s)</td>
</tr>
<tr>
<td>Specific to individual regions (a challenge to define generally); examples: regional climate variability (eg. Rainfall), habitat connectivity/shifting, acidification with effects on ecosystem</td>
</tr>
<tr>
<td>Gap assessment(s)</td>
</tr>
<tr>
<td>Technology requirements</td>
</tr>
<tr>
<td>Financial feasibility</td>
</tr>
<tr>
<td>Any new observations, data and modeling requirements</td>
</tr>
<tr>
<td>Identifying possible implementation challenges</td>
</tr>
<tr>
<td>Discussion Topic</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Societal impact(s) of the project(s)</td>
</tr>
<tr>
<td>Gap assessment(s)</td>
</tr>
<tr>
<td>Technology requirements</td>
</tr>
<tr>
<td>Financial feasibility</td>
</tr>
<tr>
<td>Any new observations, data and modeling requirements</td>
</tr>
<tr>
<td>Identifying possible implementation challenges</td>
</tr>
</tbody>
</table>
Discussion Topic

<table>
<thead>
<tr>
<th>Societal impact(s) of the project(s)</th>
<th>Specific to individual regions (a challenge to define generally); examples: regional climate variability (e.g., Rainfall), habitat connectivity/shifting, acidification with effects on ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap assessment(s)</td>
<td></td>
</tr>
<tr>
<td>Technology requirements</td>
<td></td>
</tr>
<tr>
<td>Financial feasibility</td>
<td></td>
</tr>
<tr>
<td>Any new observations, data and modeling requirements</td>
<td></td>
</tr>
<tr>
<td>Identifying possible implementation challenges</td>
<td></td>
</tr>
</tbody>
</table>
Breakout Session 2

Boundary Currents / Shelf-Deep Ocean Exchange
Candidate systems

Figure 6. Conceptual locations for a global network of boundary current arrays. Subpolar boundary current arrays are shown in orange, **poleward subtropical western boundary systems in blue**, equatorward low-latitude boundary systems in black, **major eastern boundary systems in pink**. Green shows the possible locations of arrays to monitor key interbasin exchanges.

- **WBCs (x6)** - Agulhus, Somali, Kuroshio, EAC, Gulf Stream, Brazil
- **EBCs (x5)** – California, Humboldt, Canary, Benguela, Leeuwin
- **Also consider enclosed seas (e.g. Med), sub-polar BCs (e.g. Arctic)**?
Candidate systems + OMZs
Candidate systems

• Start with already well instrumented systems?

• California, EAC
 • Backgrounder on EAC/IMOS (‘top down’)
 • Backgrounder on California Current (‘bottom up’)
 • Backgrounder on Baleric Islands/SOCIB

• Review paper(s), observing system reviews?

• Principles?
 • Addressing an economic problem (collapse of Californian sardine fishery – connecting with fisheries is natural in coastal systems)
 • Pathway for obs to interact with modelling and forecasting (So what? What next?)
 • Census of assets in the water, evaluation of effectiveness
 • Tbc...
El Viejo La Vieja

Colder

More productive

Lower oxygen

Ecosystem change

Ecosystem susceptible to multiple natural and anthropogenic pressures

Increasing CO$_2$

Decreasing pH

Higher CO$_2$ events

Four Future Climate Change Scenarios:

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>RESPONSES & IMPACTS</th>
<th>VULNERABILITY</th>
</tr>
</thead>
</table>
| **Historic Variability** | **Ecological Impacts**
Productivity of stocks fluctuate with warm-unproductive and cool-productive conditions. Species shift their range to 'follow' favorable environmental conditions |
Potential Human Responses
Fishermen generally adapted to existing variability but responses can be constrained by regulatory, historical, economic, and social factors |
Potential Social & Economic Impacts
Safety concerns in volatile weather/ocean conditions; individual, family and social stress |
Fish & Invertebrate Stocks
Fish that favor warm conditions include sardines, highly migratory species, CA spiny lobster, etc. Stocks that favor cool conditions include anchovy, Dungeness and rock crabs, Pacific halibut, spot prawn, etc. |
Fishing Communities
Small-scale fishing operations, those with specialized gear, and participants not in risk sharing networks are more vulnerable. |
| **Increased Variability** | **Ecological Impacts**
Contraction and expansion of species’ spatial distributions and variable fish production |
Potential Human Responses
Fishermen unable to predict changes; fishermen adapt with new technology |
Potential Social & Economic Impacts
Higher costs (fuel, learning, shifting); disruption in distribution links; safety concerns in volatile weather; social stress |
Fish & Invertebrate Stocks
Highly specialized or localized species, calcifying organisms are more vulnerable. Long lived species with built-in buffer to high variability are less vulnerable. |
Fishing Communities
Highly specialized and localized fisheries, small-scale fishing operations, and those with specialized gear are more vulnerable. |
<table>
<thead>
<tr>
<th>Range Shifts</th>
<th>Ecological Impacts</th>
<th>Changes and/or declines in prey quality; Range contraction of spp. that favor cool-productive conditions; Range expansion of spp. that favor warm-unproductive conditions; Changes in species life histories due to warming (tropicalization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term warming trends, more frequent warm phases, and fewer cool phases can lead to changes in acidity, temperature, and ocean circulation</td>
<td>Potential Human Responses</td>
<td>Fishermen fish harder for remaining fish after the population shifts; some fishermen follow the fish, leave the fishery, switch species or change effort for new species mix</td>
</tr>
<tr>
<td></td>
<td>Potential Social & Economic Impacts</td>
<td>Higher costs (fuel, learning, shifting); change in distribution links, revenues to communities, and access to permits for former and new species</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing Thresholds</th>
<th>Ecological Impacts</th>
<th>Species decline in response to species or ecosystems crossing thresholds or due to lack of prey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystems and fisheries cross sudden tipping points; Change in species composition and food web productivity</td>
<td>Potential Human Responses</td>
<td>Some fishermen leave the fishery, switch species, or change effort for new species mix</td>
</tr>
<tr>
<td></td>
<td>Potential Social & Economic Impacts</td>
<td>Risk of economic disaster for fishing communities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fish & Invertebrate Stocks</th>
<th>Populations near the edge of their distribution and species that favor warm conditions are less vulnerable. High turnover species are more vulnerable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing Communities</td>
<td>Small-scale fishing operations, those without access to permits, and those not in risk-sharing networks are more vulnerable.</td>
</tr>
</tbody>
</table>
New Technologies: Paradigm Shift
Data Availability (Real time and QC ‘at one click’)

Dapp SOCIB: multi-platform real time data available: 40 surface drifters, 4 Argo profilers, 2 sea-turtles, 2 gliders, 2 fixed moorings, 7 tide gages, 3 real time beach monitoring systems).

http://apps.socib.es/dapp
Candidate systems

- Started to discuss how to design an integrated system
- How to choose the mix of assets?
 - Moorings, Gliders, etc.
- Maturity of sensors (mature/pilot/proof-of-concept)
- Leveraging existing expertise in obs system operation
- Greater use of OSD/OSSE
 - Different maturity (physics, BGC, ecosystems)
- Keep coming back to the questions...
1. Interannual variability of currents and water properties has fundamental effects on ecosystem structure/dynamics in all coastal and boundary current systems.

2. Cross-shore overturning is key exchange between shelf and deep ocean.

3. Episodic events (e.g., upwelling) are key, as are submesoscale processes, and ecological hotspots.

4. Land-deep ocean connectivity.

1. Relevant processes vary in importance in different locations.

2. Different societal drivers in each boundary or coastal system.

3. Technical needs/implementation challenges vary by system.
Breakout Session 3

Boundary Currents / Shelf-Deep Ocean Exchange
What we did in this session

• Discuss our science questions
 • Some rewording to improve clarity
 • Four questions collapsed into three (Land and deep ocean connectivity covered in the other three rather than kept separate)

• Identified the processes we need to understand for each question
 • Q1 x 8, Q2 x 8, Q3 x 4

• Identified time and space scales of observations required to understand each process, for Q1 (Interannual variability)...

• Need to do this for Q2 and Q3...
Science questions

1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...
2. Cross-shore exchange between land, shelf and deep ocean (mesoscale)
3. Ecological hotspots, episodic (e.g. fronts, eddies, upwelling) and persistent (e.g. canyons, headlands, shelf break)

- Relevant processes vary in importance in different locations.
- Different societal drivers in each boundary or coastal system
- Technical needs/implementation challenges vary by system
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- Processes
 - 1.1 Depth of thermocline – T, S, at what scale?
 - 1.2 Terrestrial inflow of nutrients
 - 1.3 Plankton diversity and abundance
 - 1.4 Higher trophic distribution and abundance
 - 1.5 Volume and heat flux
 - 1.6 Carbon budget, Nutrients and Oxygen
 - 1.7 Eddy fluxes
 - 1.8 Water masses
Q2. Cross-shore exchange between land, shelf and deep ocean (mesoscale)

- Processes
 - 2.1 Terrestrial inflow of nutrients and carbon
 - 2.2 Eddy fluxes (heat, freshwater, carbon...)
 - 2.3 Bottom boundary layer
 - 2.4 Vertical fluxes – upwelling, mixing, eddy pumping
 - 2.5 Wind stress, curl
 - 2.6 Larval transport
 - 2.7 Sediment processes (nutrient fluxes etc.)
 - 2.8 Surface carbon and N2O fluxes
Q3. Ecological hotspots, episodic (e.g. fronts, eddies, upwelling) and persistent (e.g. canyons, headlands, shelf break)

- Processes
 - 3.1 Bottom up (physics), sub-mesoscale
 - 3.2 Top down - aggregation, blooms
 - 3.3 Bottom cover
 - 3.4 Anthropogenic pressures
General issues discussed up front

- EOVs? All, a subset?
- Scales?
- Size of the domain?
 - California Current, Three domains – northern, central, southern
- Topography
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.1 Depth of pycnocline – T, S, at what scale?
 • across shore 1-10’s kms out to 200km, alongshore 100-200km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 1-10 metres through the TC, lower res below
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.2 Terrestrial inflow of nutrients
 • Streamflows and BGC (nutrients, carbon, DIC, sediments...)
 • Daily
 • Atmospheric deposition
 • Weekly
 • Groundwater discharge
 • need a number...
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.3 Phytoplankton (incl Chl) and Zooplankton diversity and abundance
 • across shore 10’s kms, alongshore 100 km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 10’s metres top of the TC (MLD), lower res below (50’s m to 500m)
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.4 Higher trophic distribution and abundance
 • across shore 10’s kms, alongshore 100 km
 • 2-3 months (seasonal)
 • Top 300 metres? + surface?
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.5 Volume and heat flux
 • across shore 1-10’s kms?, alongshore 100-200km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 1-10 metres through the TC, lower res to full depth
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- 1.6 Carbon budget, nutrients and oxygen
 - Surface carbon flux (air sea exchange of CO2)
 - Carbonate system through the water column

- across shore 1-10’s kms?, alongshore 100-200km
- 2-4 weeks? (enough to resolve annual cycle)
- 1-10 metres through the TC, lower res below
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.7 Eddy fluxes
 • across shore 1-10’s kms?, alongshore 1-10’s kms
 • days
 • 1-10 metres through the TC, lower res to full depth
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.8 Water masses
 • across shore 1-10’s kms?, alongshore 100-200km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 1-10 metres through the TC, lower res to full depth
Still to be done...

• 2. Cross-shore exchange between land, shelf and deep ocean (mesoscale)

• 3. Ecological hotspots, episodic (e.g. fronts, eddies, upwelling) and persistent (e.g. canyons, headlands, shelf break)

• at finer scales...
Breakout Session 4

Boundary Currents / Shelf-Deep Ocean Exchange
What we did in this session

• Move Q1 forward to EOVs and platforms/sensors
 • Need to do this for Q2 and Q3...

• Analysis of requirements and capabilities in Candidate Systems
• Design criteria (including Observing System Design studies)

• Considerations for selecting pilot projects
 • BC/SI system
 • Scale (large, mesoscale, hotspots)
 • Societal impacts
 • Intersection with Plankton and OMZ groups
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.1 Depth of pycnocline and distribution of T, S, at what scale?
 • across shore 1-10’s kms out to 200km, alongshore 100-200km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 1-10 metres through the TC, lower res below

• EOVs and platforms/sensors
 • Gliders (T, S), + Mooring(s) where essential
 • XBTs (frequency? not until across the shelf break?)
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.2 Terrestrial inflow of nutrients
 • Streamflows and BGC (nutrients, carbon, DIC, sediments...)
 • Daily
 • Atmospheric deposition
 • Weekly
 • Groundwater discharge
 • need a number...

• EOVs and platforms/sensors
 • Where available from terrestrial observing networks
 • Potential of satellites?
 • CDOM, Salinity, Susp Sed (ship-based, autonomous)
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- 1.3 Phytoplankton (incl Chl) and Zooplankton diversity and abundance
 - across shore 10’s kms, alongshore 100 km
 - 2-4 weeks? (enough to resolve annual cycle)
 - 10’s metres top of the TC (MLD), lower res below (50’s m to 500m)

- **EOVs and platforms/sensors**
 - **Satellite Ocean colour + bio-optics**
 - Bio-optics
 - Bio-Acoustics (echo sounders)
 - CPR, Nets and bottle samples (microscopy + genomics)
 - LOPC, FlowCam (Imaging)
 - ESP (+genomics)
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- 1.4 Higher trophic distribution and abundance
 - across shore 10’s kms, alongshore 100 km
 - 2-3 months (seasonal)
 - Top 300 metres? + surface?

- EOVs and platforms/sensors (potentially high societal impact)
 - Bio-acoustics
 - Animal tagging
 - Ship-based surveys (fisheries, fisheries independent...)
 - Passive acoustics
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

• 1.5 Volume and heat flux
 • across shore 1-10’s kms?, alongshore 100-200km
 • 2-4 weeks? (enough to resolve annual cycle)
 • 1-10 metres through the TC, lower res to full depth

• EOVs and platforms/sensors
 • Gliders (T, S), + Mooring(s) where essential
 • XBTs (frequency? not until across the shelf break?)
 • Current meters
 • Surface drifters
 • Coastal altimetry
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- 1.6 Carbon budget, nutrients and oxygen
 - Surface carbon flux (air sea exchange of CO2)
 - Carbonate system through the water column

- across shore 1-10’s kms?, alongshore 100-200km
- 2-4 weeks? (enough to resolve annual cycle)
- 1-10 metres through the TC, lower res below

- EOVs and platforms/sensors (all BGC EOVs)
 - Surface - ship transects, moorings
 - Sub-Surface – bottle sampling, moorings
 - Wave gliders (transects, station keeping)
 - Gliders (pH...
Q1. How is ecosystem structure/dynamics in coastal and boundary current systems affected by interannual variability of currents and water properties, including O2/OMZs, pH/ocean acidification...

- 1.7 Eddy fluxes
 - across shore 1-10’s kms?, alongshore 1-10’s kms
 - days
 - 1-10 metres through the TC, lower res to full depth

- EOVs and platforms/sensors
 - Gliders (T, S), + Mooring(s) where essential
 - Current meters
 - Surface drifters
 - Satellite constellation, high resolution
Feasibility and Impact

• Feasibility
 • 3 high
 • 2 medium
 • 1 low
 • Blank = n/a

• Impact
 • 3 high
 • 2 medium
 • 1 low
 • Blank = n/a
<table>
<thead>
<tr>
<th>Q1 Interannual variability...</th>
<th>Gliders</th>
<th>Moorings</th>
<th>Ship based SOOP</th>
<th>Ship based RV</th>
<th>Satellite</th>
<th>Wave Glider</th>
<th>Animal Tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Depth of pycnocline</td>
<td>3/3</td>
<td>2/2</td>
<td>1/1</td>
<td>3/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Terrestrial inflow</td>
<td>3/3</td>
<td></td>
<td>1/2</td>
<td>3/1</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Plankton div & abund</td>
<td>2/2</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
<td>2/2</td>
<td>2/2</td>
<td></td>
</tr>
<tr>
<td>4 Higher trophic d&a</td>
<td>1/1</td>
<td>2/2</td>
<td>1/3</td>
<td>3/2</td>
<td>1/1</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>5 Volume & Heat flux</td>
<td>3/3</td>
<td>3/3</td>
<td>2/2</td>
<td>2/1</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Carbon, Nut + O2</td>
<td>1/2</td>
<td>2/2</td>
<td>1.5/2</td>
<td>3/1</td>
<td>2/2</td>
<td>1.5/2</td>
<td></td>
</tr>
<tr>
<td>7 Eddy Fluxes</td>
<td>2/2</td>
<td>3/2</td>
<td></td>
<td>3/3</td>
<td>2/2</td>
<td>2/2</td>
<td></td>
</tr>
</tbody>
</table>
The Rudnick/Beal “Glidmoor”
Prioritising, what next?

• Analysis of requirements and capabilities in Candidate Systems

• Observing System Design studies

• Considerations for selecting pilot projects
Prioritising, what next?

• Analysis of requirements and capabilities in Candidate Systems
 • US West Coast – what is the required backbone (Q1)?
 • IMOS/EAC - international peer review
 • Other Candidate Systems (e.g. Kuroshio?)
 • OO’19 White Paper(s) – looking forward
Prioritising, what next?
Design criteria (including OSD, OSSE)

• Develop concept for multidisciplinary backbone
• Develop generic design process
 • Build on experiences of past comprehensive systems
 • e.g. IMOS EAC, Cal. Current
 • Propose target “threshold” resolution (consider “breakthrough”/“goal”)
 • What is feasible / what is the impact
 • Engage GODAE community for OSSE
 • Balance costs/feasibility/impact of sensor/resolution choice
 • Prepare “ground segment” in advance
• Develop concept for multidisciplinary relocatable systems at finer scales (mesoscale, hot spots...)
 • Platform/sensor suite selected to deliver EOV suite relevant to region or process specific high level societal goals
• Develop generic design process
• W.r.t.: pilot – use limited time deployment with high resolution to inform subsequent sustained observation network for GOOS?
 • Evaluate “goal”/“breakthrough”/“threshold” limits
 • Duration to reveal trends from among variability
 • By testing analysis/synthesis skill with reduced resolution
• Candidate test location (s) ... ?
Prioritising, what next?

- Pilot projects – maybe 2 or 3...
- Considerations for selecting pilot projects
 - Type of system – WBC, EBC, enclosed sea, sub-polar
 - Scale (large, mesoscale, hotspots)
 - Societal impacts
 - Intersection with Plankton and OMZ groups

Ended up having excellent discussion
...but have left ourselves a bit to do!
- feasibility?
Additional slides
EOVs – Boundary Currents...

<table>
<thead>
<tr>
<th>PHYSICS</th>
<th>BIOGEOCHEMISTRY</th>
<th>BIOLOGY AND ECOSYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea state</td>
<td>Dissolved Oxygen</td>
<td>Phytoplankton biomass and diversity</td>
</tr>
<tr>
<td>Ocean surface stress</td>
<td>Inorganic macro nutrients</td>
<td>Zooplankton biomass and diversity</td>
</tr>
<tr>
<td>Sea ice</td>
<td>Carbonate System</td>
<td>Fish abundance and distribution</td>
</tr>
<tr>
<td>Sea surface height</td>
<td>Transient tracers</td>
<td>Marine turtles, birds, mammals abundance and distribution</td>
</tr>
<tr>
<td>Sea surface temperature</td>
<td>Suspended particulates</td>
<td>Live coral</td>
</tr>
<tr>
<td>Subsurface temperature</td>
<td>Nitrous oxide</td>
<td>Seagrass cover</td>
</tr>
<tr>
<td>Surface currents</td>
<td>Stable Carbon Isotopes</td>
<td>Macroalgal canopy</td>
</tr>
<tr>
<td>Subsurface currents</td>
<td>Dissolved organic carbon</td>
<td>Mangrove cover</td>
</tr>
<tr>
<td>Sea surface salinity</td>
<td>Ocean Colour (tba)</td>
<td></td>
</tr>
<tr>
<td>Subsurface salinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean surface heat flux</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Large Marine Ecosystems (LME): More fish where plankton are

- LME and SeaWiFS-derived Annual Primary Production estimates
Oxygen Minimum Zones (OMZ)

• Deep Ocean OMZ:
 • Plankton settling and decomposing

• Shelf and coastal ocean
 – Plankton settling and decomposing
GOAL: Observe marine life
- Collaborating with GOOS to link networks
- Populate OBIS
- Enable assessments
Observing system reviews – So what? What next?

For a (set of) well observed boundary current regimes, with/without significant roles for BC mediation in shelf sea and land-to-ocean processes …

• What has been learned about the limits/needs for resolution etc. as it informs specific dynamical/ecological processes
• What was learned about how to (or not to) design a multidisciplinary system
• What is missing?
 • Observations: BGC and BioECO EOV?
 • Synthesis – are we observing the rights things and scales
• Lessons on operating and deploying, sensor robustness
• Specific lessons as they may relate to OMZ and Phytoplankton IMSOO objectives where they are being considered in BC/SSI regimes
• What to do next that is new
 • Observing platforms; Operational/design strategy
 • Breakthrough scales (submesoscale, thin layers, boundary layers)
 • Modeling systems for analysis, synthesis, societal outputs
Prototype relocatable BC/SSI intensive array (pilot)

• Develop concept for multidisciplinary end-to-end system
 • Platform/sensor suite selected to deliver EOV suite relevant to region or process specific high level societal goals
• Develop generic design process
 • Build on experiences of past comprehensive systems
 • e.g. IMOS EAC, Cal. Current
 • Propose target “goal”/“breakthrough”/”threshold” resolution
 • What is feasible / what is the impact
 • Engage GODAE community for OSSE
 • Balance costs/feasibility/impact of sensor/resolution choice
 • Prepare “ground segment” in advance
• Limited time deployment with high resolution to inform subsequent sustained observation network for GOOS?
 • Evaluate “goal”/“breakthrough”/”threshold” limits
 • Duration to reveal trends from among variability
 • By testing analysis/synthesis skill with reduced resolution
• Work through to deliverables for high-level applications

Candidate test location ... ?
GODAE analysis of impact of high-resolution observations in well observed BC regimes

- Informs subsequent sustained observation network for GOOS
 - Evaluate “goal”/”breakthrough”/”threshold” limits